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Fig. 6. Characteristic impedances of
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and Z¢¢ of the four-conductor line with a square shield (B=1),
are presented graphically in Fig. 5—for the case 2s5+w=b,
2d+t=h and in Fig. 6—when s/h=0.2, d/h=0.2. The compari-
son of data for the value of the impedances Z°° and Z°? from
Fig. 5 with the corresponding results calculated from Getsinger’s
graphs [7] gives agteement within 2-3 percent.

The numerical data for the pair of the characteristic imped-
ances Z°°, Z°° and Z°¢, Z°° can be used for the design of
coupled transmission lines in square shield {8]. The graphs for the
other lines shown in Figs. 3 and 4 are presented in papers [4]-[6].
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On the Orthogonality of Approximate Waveguide
Mode Functions

HANS STEYSKAL, MEMBER, IEEE

Abstract—For many waveguides, only approximate solutions for the
mode functions are available and in such cases the question arises, whether
the orthogonality property of the exact modes can be preserved. This
problem is addressed in the present paper. A fairly general method of
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Fig. 1. Unit cell waveguide with conducting strip, occurring in a periodic

dipole array antenna.

solution is considered and it is shown that in spite of two consecutive
approximations the resultant mode functions are indeed orthogonal. Exam-
ples that have been analyzed include a rectangular waveguide with a
septum, a rectangular waveguide with an axial, conducting strip and a
(phased array) unit cell waveguide with one or more axnal conducting
strips.

INTRODUCTION

For many waveguides of practical interest, an orthogonal set of
mode functions is known to exist, but no closed form solutions
are available. For such cases approximate solutions have to be
used. A general problem in this context is whether the ortho-
gonality property of the exact modes is preserved. The ortho-
gonality, which is essential in order to expand an arbitrary field
into a set of modes, may well be lost in the course of approxima-
tions. This problem, which seems not to have been discussed
before, is addressed in the present paper.

Clearly, an approximate solution always depends on the manner
in which it is derived. However, since the present method is fairly
general and can be applied to a large class of waveguides, the
effort to establish the orthogonality of the resultant approximate
solutions for the modes is justified and worthwhile.

DERIVATION OF THE APPROXIMATE SOLUTIONS

We shall use the method given in [1] to derive approximate
solutions for the waveguide modes. This method is based upon a
decomposition of the waveguide cross section into subregions, in
each of which Helmholtz’s equation is separable. The field ex-
pressions of each region are then matched, in Galerkin’s sense,
across the common boundaries.

As an illustrative example, we consider a unit cell waveguide
[2] with an axial strip conductor (Fig. 1). This structure is useful
in the analysis of a periodic phased array with dipole elements,
where the region between the plane of the dipoles and the
groundplane can be treated as a unit cell with an axial conductor,
representing the dipole support [3].

The E-modes can be derived from a mode potential ¥(x, y)
which satisfies the 2-dimensional Helmholtz equation.

(V2 +2)¥(x,7)=0

with the boundary conditions

(1

¥(az, y)=¥(ar, y)e (2a)
d(a,,y)/0x=e"dY(ay, y)/3x (2b)
Y(x,0)=y(x,0)e” (3a)
W(x,b)/3y=e*dy(x,0)/3y (3b)
¥=0 on strip 4)

where « and B are the imposed phase shifts in the x- and
y-direction, across the unit cell. In view of the z-directed current
on the strip, 8y/dx will be discontinuous across the strip. Setting
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Y=1, in region 1 (x<<0) and ¥ =4, in region 2 (x>>0) we have
Ui(=0, »)=4,(+0, ) ()
0Y1(=0,y)/9x—dY,(+0, y) /3x=p(y) (6)

where p(y) corresponds to the (as yet) unknown strip current.

Separating the coordinates of (1) and enforcing (3) leads to

wp(x,y>=§f;,,(x>gn(y), p=1.

™

where
En(x)chnexp(ikxnx)+
g(y)=exp(ik,,y)
k,,=(B+n2m)/b,

The boundary conditions (2a), (2b), (5), and (6) provide four
equations from which the four unknown sets of expansion coeffi-
cients C,,,, D,, can be determined in terms of p and A.

Applying the Ritz—Galerkin method, we now expand p in a
finite number of basis functions {e,,}} with unknown coeffi-

cients

D, exp(—ik,,x)
(8)
k:,=\A—k2,.

2A4,e.(»),

4 ( ¥y ) =~
0, outside strip

on strip

)

This introduces the first approximation. The second approxima-
tion is committed when, for the purpose of numerical evaluation,
the infinite series (7) is truncated, leading to

N
Yo, )= 2 fou(%) 2. ). (10)
1
Finally, requiring that the approximate potential ¥/(p) has the
same projection as the exact potential in the space spanned by
{e,,}} gives in view of (4)

f Je* dy= m=1,-.-

strip

M. (1)
Equation (11) represents a set of M linear homogeneous equa-
tions for the unknowns {4,,}} and thus for nontrivial solutions
the determinant of the coefficient matrix must vanish. This
condition represents a dispersion relation from which the infinite
set of eigenvalues {A,}7 is determined, and for cach A, an
amplitude vector {Am(u)}m 1» and a corresponding ¥(x, y, p)
and mode function ¥ §(x, y, ) are obtained.

ORTHOGONALITY OF THE APPROXIMATE SOLUTIONS

In order to establish the orthogonality of the set { v §( 73] i
we use Green’s theorem giving

(?\’L—A’:)ffv‘if(uyv‘i'(v)*ds

*f[A‘P(u) ¥(v)* Cari oy ) (u)

(12)
where § is the unit cell cross section, C the contour shown in Fig,
1, and 3/9n denotes the normal derivative.

In view of the periodic boundary conditions (2), (3), contri-
butions to the contour integral from the unit cell walls cancel,
and we are left with the integral over C” and C’. This reduces to
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Fig. 2. (a) Unit cell in parallel plate region with septa. (b) Waveguide with

septum.

two similar integrals, the first one given by

[a\i'(v) B a¥(»)

*
ox dx x=+0] 4 (13)

x=—0

and the second integral obtained by interchanging p and » and
complex conjugating.
The above integral can be shown to vanish by considering

v (») ]*
I= 24 - dy. (14
‘/;tnp (r )[ 3x |i=+o y. (14)
Substituting (6) and (9) in (14) leads, in view of (11) to I=0.
Alternatively, if in (14) the series expansions for Y(p) and
0y(»)/0x are substituted we obtain, due to the orthogonality of

the functions g,(y)
*
1=0= f\If() }dy. (15)
x=+0

Therefore, the integral (13) vanishes and the orthogonality of the
approximate E-mode functions ¥ J(») is proved.

For the case of TEM-modes (1) is reduced to Laplace’s equa-
tion and boundary condition (4) is changed to Y =constant on
strip.

For H-modes, ¢ is related to the z-component of the magnetic
field and the boundary conditions are:

(4) 0y/3x=0 on strip

() 3Y(—0)/ax=0¢(+0)/dx and

(©) Y(—0)—Y(+0)=p
where p represents the y-directed surface current on the strip. Ina
manner similar to the above, the approximate solutions are then

x=-0

‘ G\T'(u)
x=—0 dx
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derived and the orthogonality of the TEM-, E-, and, H-mode
approximations established.

Further examples in which we have found the same orthogonal-
ity include a unit cell waveguide with two conducting strips, a
unit cell in a parallel plate waveguide with septa (Fig. 2a), a
regular waveguide with a conducting strip and a waveguide with a
septum (Fig. 2b). In the last case, since the waveguide height is
different in regions 1 and 2, two different sets of g,-functions,
ie., {g1.(y)} and {g,,(y)} are required. However, a sufficient
condition for mode orthogonality is that {g,,} be an orthogonal
set on (0,b,) and {g,,} be orthogonal on (0, b,). The Sturm—
Liouville operator ensures this property of the sets on their
respective intervals.

CONCLUSION

As a result, we arrive at the conclusion that the approximate
solutions for the modes have the same orthogonality property as
the exact solutions. This is a desirable but by no means obvious
result, since two consecutive approximations were made. The
solution is based upon Galerkin’s method, which uses equal basis
and testing functions [4]. Had these functions been unequal,
orthogonality would not have been preserved.
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