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Fig. 6. Characteristic impedances of four-conductor line in a square siueld

vers w/h and t/h at c, =pr = 1, s/h=O.2 and d/h =0.2.

and Z’e of the four-conductor line with a square shield (B= 1),

are presented graphically in Fig. 5 — for the case 2s + w = b,

2d+ t=h and in Fig. 6— when s/h =0.2, d/h =0.2. The compari-

son of data for the value of the impedances Z=” and 2°” from

Fig. 5 with the corresponding results calculated from Getsinger’s

graphs [7] gives agreement within 2-3 percent.

The numerical data for the pair of the characteristic imped-

ances 2’0, 2°0 and 20’, 2°0 can be used for the design of

coupled transmission lines in square shield [8]. The graphs for the

other lines shown in Figs. 3 and 4 are presented in papers [4]–[6].
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On the Orthogonality of Approximate Waveguide
Mode Functions
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A bstract— For many wavegaides, only approximate solutions for the

mode functions are available and in such cases the question arises, whether

the orthogonality property of the exact modes can be preserved. This

problem is addressed in the present paper. A fairly general method of
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Fig. 1. Unit cell wavegnide with conducting strip, occurring in a periodic
dipole array antenna.

solution is considered and it is shown that in spite of two consecutive

approximations the resultant mode functions are indeed orthogonal. F,xam-
ples that have heen anafyzed include a rectangtrfar waveguide with a

septum, a rectangular waveguide with an axial, conducting strip and a

(phased array) unit cell wavegnide with one or more axial, conducting

strips.

INTRODUCTION

For many waveguides of practical interest, an orthogonal set of

mode functions is known to exist, but no closed form solutions

are available. For such cases approximate solutions have to be

used. A general problem in this context is whether the ortho-

gonality property of the exact modes is preserved. The ortho-

gonality, which is essential in order to expand an arbitrary field

into a set of modes, may well be lost in the course of approxima-

tions. This problem, which seems not to have been discussed

before, is addressed in the present paper.

Clearly, an approximate solution always depends on the manner

in which it is derived. However, since the present method is fairly

general and can be applied to a large class of waveguides, the

effort to establish the orthogonality of the resultant approximate

solutions for the modes is justified and worthwhile.

DERIVATION OF THE APPROXIMATE SOLUTIONS

We shall use the method given in [1] to derive approximate

solutions for the waveguide modes. This method is based upon a

decomposition of the waveguide cross section into subregions, in

each of which Helrnholtz’s equation is separable. The field ex-

pressions of each region are then matched, in Galerkin’s sense,

across the common boundaries.

As art illustrative example, we consider a unit cell waveguide

[2] with an axial strip conductor (Fig. 1). This structure is useful

in the analysis of a periodic phased array with dipole elements,

where the region between the plane of the dipoles and the

groundplane can be treated as a unit cell with an axial conductor,

representing the dipole support [3].

The E-modes can be derived from a mode potential tj(x, y)

which satisfies the 2-dimensional Helmholtz equation.

(v2+A)+(x, y)=o (1)

with the boundary conditions

~(a~, y)=$(al, y)e’a (2a)

a+(~2, y)/ax=d”a*(ul, y)/ax (2b)

*(x, b)=$(x,O)ezF (3a)

d$(x, b)\aY=e@i3$(x,0)/aY (3b)

~= O on strip (4)

where a and ~ are the imposed phase shifts in the x- and

y-direction, across the unit cell. In view of the z-directed current

on the strip, i3$/i3x will be discontinuous across the strip. Setting

+=+1 in region 1 (x<O) and +=iz in region 2 (x>O) we have

+,(–0!Y)=+2(+QY) (5)

a+l(–o, y)/ax–a~z(+o, y)/ax=p(y) (6)

where p(y) corresponds to the (as yet) unknown strip current.

Separating the coordinates of(1) and enforcing (3) leads to

%(w)=if&)a(Y)* p=l,2 (7)
1

where

&(x) =cp~exp(ik.,nx) +Dpnexp(-ikxnx)

dy)=exp(~kyny) (8)

kY~=(~+n2~)/b, k:n=~–kz
yn.

The boundary conditions (2a), (2b), (5), and (6) provide four

equations from which the four unknown sets of expansion coeffi-

cients CP~, DPn can be determined in terms of p and A.

Applying the Ritz– Galerkin method, we now expand p in a

finite number of basis functions {e~}~ with unknown coeffi-

cients

/
p(y )= ~,4mem(y), on strip

(9)

[0, outside strip

This introduces the first approximation. The second approxima-

tion is committed when, for the purpose of numerical evaluation,

the infinite series (7) is truncated, leading to

ljp(x,y)=’j&(x)gn(y).
1

(lo)

Finally, requiring that the approximate potential &p) has the

same projection as the exact potentiaf in the space spanned by

{e~)y gives in view of (4)

J+ ‘e; dy=O, ~=1 ,...,M. (11)
strip

Equation (11) represents a set of M linear homogeneous equa-

tions for the unknowns {A ~ }~ and thus for nontrivial solutions

the determinant of the coefficient matrix must vanish. This

condition represents a dispersion relation from which the infinite

set of eigenvalues {AP}~ is determined, aud for each XW an

amplitude vector {A~Q)}#=,, and a corresponding J(x, y, p)

and mode function v +( x, y, p) are obtained.

ORTHOGONALITY OF THE APPROXIMATE SOLUTIONS

In order to establish the orthogonality of the set { V ~(p)}&,,

we use Green’s theorem giving

(12)

where S is the unit cell cross section, C the contour shown in Fig.

1, and i)/a n denotes the normal derivative.

In view of the periodic boundary conditions (2), (3), contri-

butions to the contour integral from the unit cell walls cancel,

and we are left with the integral over C“ and C’. This reduces to
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Fig. 2. (a) Unit cell in parallel plate region with septa, (b) Waveguide with
septum.

two similar integrals, the first one given by

[

a%(v) a$(v) II
*AJW)~ ~=_o–-xi- dy (13)

X=+(J

and the second integral obtained by interchanging ~ and v and

complex conjugating.

The above integral can be shown to vanish by considering

I=
j ()[ av(v) IIa~(v) *

+/LT –~ dy. (14)
strip x=—o ~=+1)

Substituting (6) and (9) in (14) leads, in view of (11) to 1=0.

Alternatively, if in (14) the series expansions for ~(~) and

a~(v)/ax are substituted we obtain, due to the orthogonality of

the functions g.(y)

J[

al(v)

1

a%(v) *
~=o= ~%(p) ~

ax dy. (15)
~= —() ~=+o

Therefore, the integral (13) vanishes and the orthogonality of the

approximate E-mode functions v $( v ) is proved.

For the case of TEM-modes (1) is reduced to Laplace’s equa-

tion and boundary condition (4) is changed to ~= constant on

strip.

For H-modes, + is related to the z-component of the magnetic

field and the bounday conditions are:

(4) a~/ax=o on strip

(5) i3*(-o)/i3x=a*( +o)/i3x and

(6) +(–0)–~(+O)=p

where p represents they-directed surface current on the strip. In a

manner similar to the above, the approximate solutions are then

derived and the orthogonality of the TEM-, E-, and, H-mode

approximations established.

Further examples in which we have found the same orthogonal-

ity include a unit cell waveguide with two conducting strips, a

unit cell in a parallel plate waveguide with septa (Fig. 2a), a

regular waveguide with a conducting strip and a waveguide with a

septum (Fig. 2b). In the last case, since the waveguide height is

different in regions 1 and 2, two different sets of g. -functions,

i.e.) {gI.(y)} ad {gZ.(Y)} Me req~red. However, a sufficient
condition for mode orthogonality is that {gl. } be an orthogonal

set on (O,b,) and {g2. } be orthogonal on (O, b2). The Sturm–
Liouville operator ensures this property of the sets on their

respective intervals.

CONCLUSION

As a result, we arrive at the conclusion that the approximate

solutions for the modes have the same orthogonality property as

the exact solutions. This is a desirable but by no means obvious

result, since two consecutive approximations were made. The

solution is based upon Galerkin’s method, which uses equal basis

and testing functions [4]. Had these functions been unequal,

orthogonality would not have been preserved,
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